Nilpotent derivations
نویسندگان
چکیده
منابع مشابه
Triangulable Locally Nilpotent Derivations in Dimension Three
In this paper we give an algorithm to recognize triangulable locally nilpotent derivations in dimension three. In case the given derivation is triangulable, our method produces a coordinate system in which it exhibits a triangular form.
متن کاملCharacterization of Rank Two Locally Nilpotent Derivations in Dimension Three
In this paper we give an algorithmic characterization of rank two locally nilpotent derivations in dimension three. Together with an algorithm for computing the plinth ideal, this gives a method for computing the rank of a locally nilpotent derivation in dimension three.
متن کاملAffine T-varieties of complexity one and locally nilpotent derivations
Let X = SpecA be a normal affine variety over an algebraically closed field k of characteristic 0 endowed with an effective action of a torus of dimension n. Let also ∂ be a homogeneous locally nilpotent derivation on the normal affine Zn-graded domain A, so that ∂ generates a k+-action on X. We provide a complete classification of pairs (X,∂) in two cases: for toric varieties (n = dimX) and in...
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملThe Degrees of Nilpotency of Nilpotent Derivations on the Ring of Matrices
We consider Mn(R), the ring of n by n matrices on the real numbers where n ≥ 2. We find all of the natural numbers that are the degree of nilpotency of some nilpotent derivations on Mn(R). Mathematics Subject Classification: 16S50, 13N15, 16N40
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2005
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.02.010